# POWER INDICES AND SURDS RULES OR FORMULAS

Importance : 1 or 2 questions from ‘Surds and Indices’ have essentially been asked in every exam. In order to accuracy in your calculations, you will require complete practice of this chapter.

Scope of questions : Asked questions are based on basic concepts, completely arithmetic and without language like to evaluate /simply, greatest/lowest number, increasing/ decreasing order, square, cube, square root, cube root and higher powers starting from easier to tougher levels. Way to success : Note that practice to solve these questions with full concentration and accuracy is essential. Only because of small mistake or not understanding , the basic concepts many students are unable to solve these questions.

INDICES
In seventeenth century, a French mathematician Reni Dakata’s multiplied a number several times and showed the obtained product by a special rule, which is called ‘indices’ and the converse of indices is called surds.

Rule 1 : If any number is multiplied by the same number ‘n’ times, then,

a × a × a × a ………. × a (n times) = an

(i) where n and a are real numbers.(including fractions)

(ii) a is called base.

(iii) n is called indices.

Rule 2 : am × an = am+n

and am × an × ap = am+n+p

While multiplying, If base is same then powers get added.

Rule 3 : While multiplying , if bases are different but powers are same then,

ax × bx × cx = (abc)x

Rule 4 : While dividing, if base is same, then powers get subtracted , as

am ÷ an = am – n

Rules 5 : If there is negative indices on a number, then

$${ a }^{ -m }=\frac { 1 }{ { a }^{ m } } \quad or,\quad { a }^{ m }=\frac { 1 }{ { a }^{ -m } }$$

Rule 6 : If there are indices on indices, then indices are multiplied. As,

(i) $${ \left( { a }^{ m } \right) }^{ n }={ a }^{ mn }$$

(ii) $${ \left( { a }^{ m } \right) }^{ \frac { 1 }{ n } }={ a }^{ \frac { m }{ n } }$$

(iii) $${ \left\{ { \left( { a }^{ m } \right) }^{ n } \right\} }^{ p }={ a }^{ mnp }$$

Rule 7 : (i) $${ { a }^{ m } }^{ n }\neq { \left( { a }^{ m } \right) }^{ n }$$

(ii) $${ { a }^{ m } }^{ \frac { 1 }{ n } }\neq { \left( { a }^{ m } \right) }^{ \frac { 1 }{ n } }$$

(iii) $${ { a }^{ m } }^{ { n }^{ p } }\neq { \left\{ { \left( { a }^{ m } \right) }^{ n } \right\} }^{ p }$$

Rule 8 : Indices as fraction.

(i) $${ \left( \frac { a }{ b } \right) }^{ n }=\quad \frac { { a }^{ m } }{ { b }^{ m } }$$

(ii) $${ \left( \frac { a }{ b } \right) }^{ -m }=\quad { \left( \frac { b }{ a } \right) }^{ m }$$

Rule 9 : If ax = ay , then x = y and if xn = yn , then x = y

Rule 10 : If the indices on any number is zero, the value of that number is 1, as

x0 = 1, 50 = 1, 100 = 1, (5000)0 = 1

Rule 11 : If ‘a’ is a rational number and n is a positive integer, then $$nth\quad root\quad of\quad ‘a’,{ a }^{ \frac { 1 }{ n } }or\quad \sqrt [ n ]{ a }$$ is an irrational number,

$$\sqrt [ n ]{ a } \quad is\quad called\quad surd\quad of\quad n\quad indices,\quad$$

$$it\quad means\quad \sqrt [ n ]{ a } \quad is\quad a\quad surd$$

Where (i) ‘a’ is a rational number.

(ii) ‘n’ is a positive integer.

$$(iii)\quad \sqrt [ n ]{ a } \quad is\quad an\quad irrational\quad number.$$

Rule 12 : $$If\quad \sqrt [ n ]{ a } is\quad a\quad surd,$$ then n is called surd indices and a is called ‘Radicand’ . Every surd can be an irrational number, but every irrational number can not be a surd.

Rule 13 : Mixed Surds – A surd having a rational co-efficient other than unity is called a mixed surd.

Rule 14 : Pure Surd – The surds whose one factor is 1 and other factor is an irrational number, then that type of surd or the surd which is completely under radical sign.

Rule 15 : Similar Surds – The surds whose irrational factor is same, that is called similar surds.

Rule 16 : Irrational numbers as −  √2 ,  √3 ,  √5 ,  √7 …….. etc. have infinite recurring decimals.

Rule 17 : $$\sqrt [ n ]{ a } ={ \left( a \right) }^{ \frac { 1 }{ n } }$$

Rule 18 : $${ \left( \sqrt [ n ]{ a } \right) }^{ n }=a$$

Rule 19 : $$\sqrt [ n ]{ ab } =\sqrt [ n ]{ a } \times \sqrt [ n ]{ b } ={ \left( a \right) }^{ \frac { 1 }{ n } }\times { (b) }^{ \frac { 1 }{ n } }$$

Rule 20 : $$\sqrt [ n ]{ \sqrt [ n ]{ a } } ={ \left( { \left( a \right) }^{ \frac { 1 }{ n } } \right) }^{ \frac { 1 }{ n } }={ a }^{ { n }^{ \frac { 1 }{ 2 } } }$$

Rule 21 : $$\sqrt [ n ]{ \frac { a }{ b } } =\frac { \sqrt [ n ]{ a } }{ \sqrt [ n ]{ b } } ={ \left( \frac { a }{ b } \right) }^{ \frac { 1 }{ n } }$$

Rule 22 : $$\sqrt [ m ]{ \sqrt [ n ]{ a } } =\sqrt [ mn ]{ a }$$

Rule 23 : $$\sqrt { x\sqrt { x\sqrt { x\sqrt { x…….n\quad times } } } } ={ x }^{ \left( 1-\frac { 1 }{ { x }^{ n } } \right) }$$

Rule 24 : $$If\quad \sqrt { x-\sqrt { x-\sqrt { x-\quad …\infty } } } ,$$ where x n(n + 1)

then, $$\sqrt { x-\sqrt { x-\sqrt { x-\quad …\infty } } } =n$$

Rule 25 : $$If\quad \sqrt { x+\sqrt { x+\sqrt { x+\quad …\infty } } }$$ where x =n(n+1)

then, $$\sqrt { x+\sqrt { x+\sqrt { x+\quad …\infty } } } =(n+1)$$

Rule 26 : $$\sqrt [ a ]{ b } ,\sqrt [ x ]{ y } ,\sqrt [ n ]{ m } ,\sqrt [ p ]{ q }$$

To find smallest or greatest out of these, we should equate all the indices and compare the base.

Thanks you and All the best!

You can join or visit at Facebook Page  or Twitter  for always keep in touch with further updates.